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Calculation of the structure factor of a system of interacting charged spheres based on the Ginoza 

solution of the Ornstein-Zernike equation has been developed and implemented on a stand-alone 

spreadsheet. This facilitates direct interactive numerical and graphical comparisons between 

experimental structure factors with the pioneering theoretical model of Hayter-Penfold that uses 

the Hansen-Hayter renormalisation correction. The method is used to fit example experimental 

structure factors obtained from the small-angle neutron scattering of a well-characterised charged 

micelle system, demonstrating that this implementation, available in the Supplementary 

Information, gives identical results to the Hayter-Penfold-Hansen approach for the structure 

factor, S(q) and provides direct access to the pair correlation function, g(r). Additionally, the 

intermediate calculations and outputs can be readily accessed and modified within the familiar 

spreadsheet environment, along with information on the normalisation procedure. 

 

 

 

 

 

 

Graphical abstract 



Introduction 

 

In its simplest terms, the structure factor of a system describes local correlations, related to the 

probability of finding a particle at a given separation from another. In scattering experiments, the 

structure factor is a measure of the interference of radiation scattered from different objects, and 

thus the correlations observed provide a measure of local order. These correlations are dependent 

on the way particles interact, from simple volume exclusion effects to ‘sticky’ pair potentials for 

attractive particles and the screened Coulombic repulsion of like-charged objects.1,2 The structure 

factor is often given the symbol S(q), measured in scattering experiments as a function of the 

scattering vector, q. The functional form of S(q) depends on the number concentration of objects 

as well as the range, intensity and type of interactions that they experience. The Fourier 

transform of the structure factor gives the pair correlation function, g(r), that gives the 

probability, 4πr2 g(r) dr, of finding two particles in the separation interval r to r + dr. Its value 

tends to unity at large separations where correlations are no longer significant. 

 

In a large number of systems, particularly where water is the solvent, particles will experience 

interactions dominated by the repulsions between their surface charges. These repulsions are 

screened by dissociated counterions and added salt, resulting in a classical Gouy-Chapman 

double-layer interaction that can be modelled with the Poisson-Boltzmann theory.3 Well-studied 

examples include micelles formed from ionic surfactants, polymer, metal and oxide particles and 

charged globular proteins and polyelectrolytes.1 

 

As well as wide applications in the analysis and quantitative modelling of data from small-angle 

X-ray, neutron and light scattering, the charged-sphere structure factor is central to many other 

correlative analyses of fluid systems including theoretical studies of colloidal glasses,4 structural 

forces in rigid and deformable systems5,6 and Monte Carlo simulations of interacting systems.7 

Thus, a method to quickly and easily calculate charged-sphere structure factors while still having 

access to the fitting equations and process is of interest to a number of fields. 

 

The most widely used construction to obtain the structure factor for such interacting charged 

systems, modelled as charged spheres, was derived more than 30 years ago by Hayter and 



Penfold.8 The charged spheres are assumed to interact via a hard core with diameter, σ, that 

implies g(r) = 0 for r < σ, plus a repulsive screened Coulomb or Yukawa9 pair potential: u(r) = 

(uo/r) exp(–κ r), for r > σ, where the constant, uo > 0. This work underpinned diverse advances in 

the field of particle and soft matter systems over the past three decades by allowing rapid and 

precise calculations and modelling to be performed. 

 

The model for calculating the structure factor, S(q) uses the known solution10,11 of the Ornstein-

Zernike equation12 with a direct correlation function, c(r) that has a screened Coulomb or 

Yukawa form when the spheres are not in contact (r > σ). In the Mean Spherical Approximation 

(MSA), used in the Hayter and Penfold model,8 the assumption that c(r) = –u(r)/(kBT) for r > σ is 

used where kB is Boltzmann’s constant and T the absolute temperature. For low volume fractions 

of particles, the MSA can give the unphysical result, namely, g(r) < 0 at small separations - that 

is, a negative probability of finding a particle at a finite separation. Hansen and Hayter proposed 

a ‘renormalisation' method13 in which the hard core diameter is increased to a larger value σ’, 

with the scaling parameter s = σ/σ’ < 1 chosen so that g(r = σ’) = 0 at the same particle number 

density. Thus the theoretical basis for modelling screened Coulombic interactions between 

colloidal particles is to relate the constant uo to physical quantities such as particle charge, 

relative dielectric permittivity of the solvent and the Debye screening parameter, κ that is related 

to the salt concentration by: κ–1 = [εrε0kBT/(2NAe2I)]1/2 where εr and ε0 are the relative permittivity 

of the solvent and the vacuum permittivity respectively, NA is Avogadro’s number, e is the 

fundamental charge and I is the solution ionic strength. A popular option is to use the linear 

Debye-Hückel model or the non-linear Poisson-Boltzmann model to calculate the constant uo and 

the screening parameter, κ. 

 

Different approaches to the numerical evaluation of the original analytic solution by Waisman14 

have been considered15,16. The most convenient is that based on the alternate analytic solution by 

Ginoza17,18 that is adopted here. 

 

Methods 

 

The Hayter-Penfold/Hansen-Hayter model has been implemented within closed, stand-alone 



software packages on a number of platforms such as SASView19 (international large scale 

facilities collaboration), FISH20 (Rutherford Appleton Laboratories), the NIST fitting macros21 

produced for IGOR Pro (NIST, Gaithersburg, MD) and SASfit22 (Paul Scherrer Institut). The 

computational details of these packages are not readily accessible to users so there is limited 

scope for modifying the code. Given the current capabilities of personal computers and tablets 

and the common availability of spreadsheet programs on these platforms, it is timely to make the 

Hayter-Penfold/Hansen-Hayter model available on a broader platform with the additional 

advantage that details of the computational steps are openly available for users to study and 

modify, and the type of input parameters (physical quantities or non-dimensional values) can be 

chosen by the user. 

 

The standard implementations of the Hayter-Penfold model8 are based on the Waisman 

solution10 of the Ornstein-Zernike equation with a Yukawa form for the direct correlation 

function, c(r). They involve first finding numerically the correct zero of a quintic polynomial and 

then an iterative Newton algorithm is used to determine the scaling parameter s = σ/σ’ of the 

Hansen-Hayter renormalisation.13  

 

Here we use the Ginoza solution18 of the same equation. For repulsive interactions, this involves 

finding a unique positive zero of a non-linear equation from which all other parameters are easily 

determined (see Electronic Supplement for details). The correct scaling parameter, s is found 

interactively within the spreadsheet. 

 

The structure factor, S(k) determined by the Ornstein-Zernike equation12 with a single-

component Yukawa form9 for the direct correlation function: c(x) = –(γ/x) exp(–kx), x = r/σ > 1, 

and g(x) = 0 for  x < 1, is determined by only 3 fundamental non-dimensional parameters: the 

volume fraction: η = πnσ3/6, where n is the number density of particles, the dimensionless 

screening parameter: k = κσ, and the constant: γ = uo/(kBT) > 0 that characterises the strength of 

the repulsive interaction. However, current implementations of the Hayter-Penfold/Hansen-

Hayter model8,13 mentioned above require specification of physical parameters such as the 

particle charge, the relative permittivity, particle radius, salt concentration of a univalent 

electrolyte, temperature and particle volume fraction. The precise relation between between these 



physical parameters to the 3 non-dimensional parameters (η, k, γ) depends on an assumed model 

of the electric double layer repulsion and is independent of the solution of the Ornstein-Zernike 

equation for S(k). In the Hayter-Penfold/Hansen-Hayter model, the superposition or weak 

coupling approximation of the linear Debye-Hückel model is assumed with:  uo = (Ze)2 exp(κσ) / 

[π εo ε σ (2 + κσ)2], where (Ze) is the charge on the particle and (εo ε) is the dielectric permittivity 

of the solvent and both added salt and intrinsic counter-ions, restricted to be univalent, contribute 

to the Debye screening parameter, κ.  

 

In our implementation of the Ginoza form of the solution, which gives the same numerical 

results as those given by current implementations of the Hayter-Penfold/Hansen-Hayter model, 

we offer the option of calculating S(k) in terms of the 3 non-dimensional parameters (η, k, γ). 

This option affords the flexibility of using a different model of the electric double layer repulsion, 

such as the non-linear Poisson-Boltzmann model and electrolytes of different valencies,23 to 

relate physical parameters to the 3 fundamental non-dimensional parameters (η, k, γ) of the 

Ornstein-Zernike equation. Furthermore, our implementations allows the user to specify the ionic 

strength of the added salt and the valence of the intrinsic counter-ions whereas all current 

implementations of the Hayter-Penfold/Hansen-Hayter model8,13 are restricted to univalent salts 

and counter-ions. 

 

By implementing our solution on a spreadsheet, we take advantage of the widespread familiarity 

with this common computational environment and is general capabilities. It is easy also to import 

and manipulate experimental data in a spreadsheet format. The built-in graphing options of the 

spreadsheet are used to provide real time feedback during fitting and comparison between model 

and experiment. Users have the flexibility to use the spreadsheet environment to either modify 

details of the model or export the results to other applications. The open nature of the 

implementation further provides pedagogic value to newcomers to the field. 

 

Results and discussion 

 

To demonstrate the ability of the routine to accurately model experimental structure factors, 

comparison was made with structure factors obtained from small-angle neutron scattering of 



charged sodium dodecyl sulfate (SDS) micelles in water (Fig. 1). The scattering data were 

obtained from previous work,5 and pseudo-structure factors were calculated by dividing the raw 

scattering data by the calculated micelle volume fraction and a form factor used consistently 

across all concentrations, representing hard spheres of radius 18.5 Å, after Bartlett and 

Ottewill.24 This method, although somewhat crude in its assumptions (i.e. that the form factor is 

concentration independent), provides an relatively accurate approximation of the structure factor 

in the low q range, where the contribution from the form factor is approximately constant. It is 

assumed that the background electrolyte contribution comes from the non-aggregated surfactant 

monomers, and the best fit value for these data is 5±1 mM. The data can then be consistently fit 

to the level of agreement shown in Fig. 1 by assuming 26 charges per particle (micelle) and 

particle volume fractions of 0.011, 0.022 and 0.044 for 50, 100 and 200 mM SDS respectively.  

 

A much more precise procedure for obtaining experimental structure factors from small-angle 

scattering utilises contrast variation to obtain data sets for compositionally equivalent samples at 

different contrast conditions.2 A simultaneous model fit constraining structure factor across the 

data sets then provides an accurate measure of the structure factor. However, this was not 

possible with the data available here, and the proof of principle for obtaining structure factors 

with experimentally reasonable physical quantities is evident. 

Fig. 1. Pseudo-structure factors from small-angle neutron scattering of SDS micelles at different 



surfactant concentrations. Symbols are experimentally-derived structure factors and solid lines 

are fits using the spreadsheet method described in the text. The traces are offset vertically by 

multiplication as noted, for clarity of presentation. 

 

The spreadsheet-derived structure factors fit the experimentally obtained data well across the 

low-q range, with physical parameters that take reasonable values in line with literature reports 

on SDS micelles.25,26 The fitting is also identical to that obtained using the same parameters in 

the SASView fitting program,19 indicating that the Ginoza implementation here is equivalent to 

the Waisman solution conventionally used. 

 

Conclusion 

 

We have presented a new method for calculating the structure factor for interacting charged 

spheres, based on the Ginoza solution18 to the Ornstein–Zernike equation12 with renormalisation. 

To test the efficacy of the calculation, we fitted structure factor data obtained from small-angle 

neutron scattering of negatively charged surfactant micelles in aqueous solution.5 In providing a 

flexible solution to the problem of inter-particle structure factors and pair correlation functions 

on a spreadsheet platform, we broaden the accessibility of an important tool that has been 

indispensable in modelling data obtained by neutron, x-ray or light scattering.1,2,8,13 The open 

nature of the implementation further provides pedagogic value to newcomers to the field and 

allows direct access to the input type, equations and fitting procedure, in order to better control 

and understand structure factors for a wide range of systems. 
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